March 1999 Revised June 2000 NC7WZ17 TinyLogic™ UHS Dual Buffer with Schmitt Trigger Inputs

NC7WZ17 TinyLogic[™] UHS Dual Buffer with Schmitt Trigger Inputs

General Description

FAIRCHILD

SEMICONDUCTOR

The NC7WZ17 is a dual buffer with Schmitt trigger inputs from Fairchild's Ultra High Speed Series of TinyLogicTM in the SC70 6-lead package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.8V to 5.5V V_{CC} range. The inputs and outputs are high impedance when V_{CC} operating voltage. Schmitt trigger inputs typically achieve 1V hysteresis between the positive going and negative going input threshold voltage at 5V V_{CC}.

Features

- Space saving SC70 6-lead package
- \blacksquare Ultra High Speed: t_{PD} 3.6 ns Typ into 50 pF at 5V V_{CC}
- High Output Drive: ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.8V to 5.5V

Connection Diagrams

A₁ 1

GND 2

(Top View)

- \blacksquare Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/outputs
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

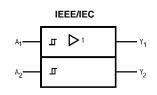
6 Y₁

5 V_{CC}

4 Y₂

AAA

(Top View) Pin One Orientation Diagram


Pin One AAA represents Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the Top Product Code Mark left to right. Pin One is the lower left pin (see diagram).

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7WZ17P6	MAA06A	Z17	6-Lead SC70, EIAJ SC88, 1.25mm Wide	250 Units on Tape and Reel
NC7WZ17P6X	MAA06A	Z17	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel

Logic Symbol

Pin Descriptions

Pin Names	Description
A ₁ , A ₂	Data Inputs
Y ₁ , Y ₂	Output

Function Table

Y :	= A
Input	Output
Α	Y
L	L
н	н

H = HIGH Logic Level

L = LOW Logic Level

TinyLogic[™] is a trademark of Fairchild Semiconductor Corporation.

© 2000 Fairchild Semiconductor Corporation DS500217

Absolute Maximum Ratings(Note 1)

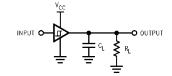
Supply Voltage (V _{CC})	-0.5V to +7V
DC Input Voltage (V _{IN})	-0.5V to +7V
DC Output Voltage (V _{OUT})	-0.5V to +7V
DC Input Diode Current (IIK)	
@ V _{IN} < -0.5V	–50 mA
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–50 mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage Operating (V_{CC})	1.8V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Thermal Resistance (θ_{JA})	350°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol	Parameter	V _{cc}		$T_A = +25^{\circ}C$		$T_{A} = -40^{\circ}$	C to +85°C	Units	<u> </u>	nditions
Symbol	Falameter	(V)	Min	Тур	Max	Min	Max	Units		nuitions
V _P	Positive Threshold	1.8	0.7	1.07	1.5	0.7	1.5			
	Voltage	2.3	1.0	1.38	1.8	1.0	1.8			
		3.0	1.3	1.74	2.2	1.3	2.2	V		
		4.5	1.9	2.43	3.1	1.9	3.1			
		5.5	2.2	2.88	3.6	2.2	3.6			
V _N	Negative Threshold	1.8	0.25	0.56	0.9	0.25	0.9			
	Voltage	2.3	0.40	0.75	1.15	0.40	1.15			
		3.0	0.6	0.98	1.5	0.6	1.5	V		
		4.5	1.0	1.42	2.0	1.0	2.0			
		5.5	1.2	1.68	2.3	1.2	2.3			
V _H	Hysteresis Voltage	1.8	0.15	0.51	1.0	0.15	1.0			
		2.3	0.25	0.62	1.1	0.25	1.1			
		3.0	0.4	0.76	1.2	0.4	1.2	V		
		4.5	0.6	1.01	1.5	0.6	1.5			
		5.5	0.7	1.20	1.7	0.7	1.7			
V _{он}	HIGH Level Output	1.8	1.7	1.8		1.7				$I_{OH} = -100 \ \mu M$
	Voltage	2.3	2.2	2.3		2.2				
		3.0	2.9	3.0		2.9				
		4.5	4.4	4.5		4.4		v		
		2.3	1.9	2.14		1.9		v	$V_{IN} = V_{IH}$	$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.75		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.62		2.3				I _{OH} = -24 mA
		4.5	3.8	4.13		3.8				I _{OH} = -32 mA
V _{OL}	LOW Level Output	1.8		0.0	0.1		0.1			$I_{OL} = 100 \ \mu A$
	Voltage	2.3		0.0	0.1		0.1			
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1	v	$V_{IN} = V_{IL}$	
		2.3		0.10	0.3		0.3	v	VIN – VIL	$I_{OL} = 8 \text{ mA}$
		3.0		0.16	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.24	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.25	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1	1	±1.0	μΑ	$V_{IN} = 5.5V_{e}$	GND
I _{OFF}	Power Off Leakage Current	0.0			1	1	10	μΑ	$\rm V_{IN}$ or $\rm V_{OU}$	
lcc	Quiescent Supply Current	1.8 to 5.5			1.0		10	μΑ	$V_{IN} = 5.5V_{e}$	GND

Symbol	Parameter	V _{CC}		$\textbf{T}_{\textbf{A}}=+\textbf{25}^{\circ}\textbf{C}$		$T_A = -40^{\circ}$	C to +85°C	Units	Conditions	Fig. No.
Gymbol	rarameter	(V)	Min	Тур	Max	Min	Max	Onits	conditions	Fig. NO.
t _{PLH}	Propagation Delay	1.8	2.0	6.9	11.9	2.0	13.1			
t _{PHL}		2.5 ± 0.2	1.5	4.8	8.2	1.5	9.0	ns	$C_L = 15 \text{ pF},$	Figures 1, 3
		3.3 ± 0.3	1.0	3.7	5.6	1.0	6.2		$R_L = 1 \ M\Omega$	
		5.0 ± 0.5	0.8	3.0	4.7	0.8	5.2			
t _{PLH}	Propagation Delay	3.3 ± 0.3	1.5	4.3	6.6	1.5	7.3	ns	$C_{L} = 50 \text{ pF},$	Figures
t _{PHL}		5.0 ± 0.5	1.0	3.6	5.6	1.0	6.2	115	$R_L = 500\Omega$	1, 3
CIN	Input Capacitance	0		2.5				pF		1
C _{PD}	Power Dissipation	3.3		10				"Г	(Nata 2)	Figure 2
	Capacitance	5.0		12				pF	(Note 3) Figure 3	Figure 2

loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC} static).$

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

FIGURE 1. AC Test Circuit

Input = AC Waveform; t_r = t_f = 1.8 ns; PRR = variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

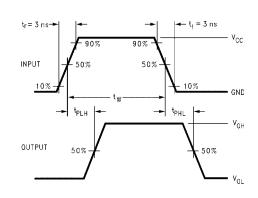
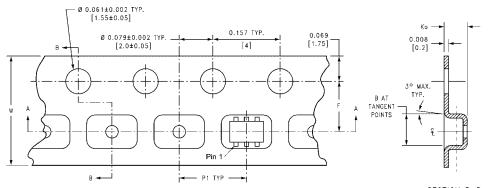
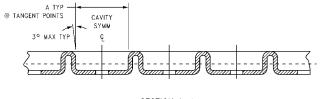


FIGURE 3. AC Waveforms

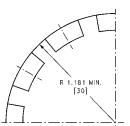


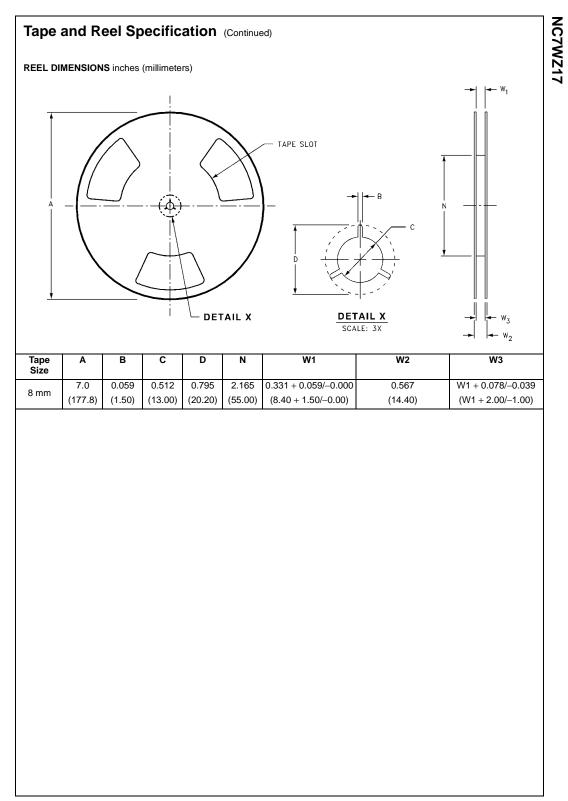
Tape and Reel Specification

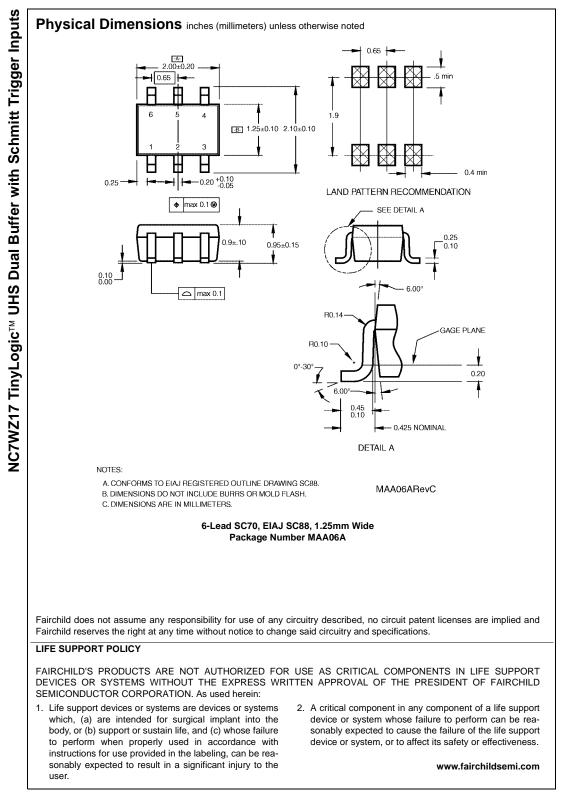
2 ----


rupe und ne	opeonioation			
TAPE FORMAT				
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
P6	Carrier	250	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed
	Leader (Start End)	125 (typ)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)






SECTION A-A

BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-6	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
3070-0	0 11111	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
	-		•				•

